Flow electrolysis on high surface electrode for biodegradability enhancement of sulfamethazine solutions

نویسندگان

  • I. Saidi
  • Isabelle Soutrel
  • Florence Fourcade
  • Abdelatif Amrane
  • Didier Floner
  • Nizar Bellakhal
  • Florence Geneste
  • F. Fourcade
  • A. Amrane
  • D. Floner
  • N. Bellakhal
  • F. Geneste
چکیده

The main objective of this study was to examine the feasibility of coupling an electrochemical process with a biological treatment for the degradation of sulfamethazine, a biorecalcitrant antibiotic. The electrochemical behavior of sulfamethazine was examined by cyclic voltammetry, showing an electroactivity in oxidation. The pre-treatment was carried out using an electrochemical flow cell involving a graphite felt electrode of high specific area. After a single pass through the cell, the analysis of the electrolyzed solution showed a promising trend in view of the proposed combined process, namely a high degradation of the target compound (more than 90%) while the mineralization level remained low (it did not exceed 20%). The optimization of the operating conditions, viz. flow rate and applied potential, allowed to improve the biodegradability of sulfamethazine solutions. Indeed, under optimal conditions, the biodegradability based on the BOD5 on COD ratio measurement was improved from 0.08 to 0.58, namely above the threshold limit value (0.4).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode

The electrochemical oxidation of sulfamethazine (SMZ) has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE) by cyclic voltammetry. This modified electrode (MWCNT-GCE) exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less posit...

متن کامل

Microstructure and Corrosion Performance of Silica Coatings on Aluminum Surface Prepared by Plasma Electrolysis Technique

Silica phases were precipitated on aluminum surface by potentiostatic plasma electrolysis technique. Aqueous sodium silicate solutions with different concentrations were used for this purpose. SEM, EDS, XRD, surface profiles and polarization curves were used to study coatings properties. The results showed that the growth of the silica containing phases on aluminum surface was promoted by incre...

متن کامل

An Experimental Study of the Effect of High Electric Field on Mass Transfer Enhancement

Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using a very small amount of energy. The enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode charged with positive high DC voltage impinges on water surface an...

متن کامل

Electrode Reactions

Electrode Reactions A typical electrode reaction involves the transfer of charge between an electrode and a species in solution. The electrode reaction usually referred to as electrolysis, typically involves a series of steps: * Reactant (O) moves to the interface: this is termed mass transport * Electron transfer can then occur via quantum mechanical tunnelling between the electrode and reacta...

متن کامل

Electrochemical Reduction of Selenium ( + 4 ) in Acidie Perchlorate Solutions

The mechanism of selenium(+4) electrocbemical reduction in acidic perchlorate solutions was studied. Dropping mercury and hanging mercury drop electrodes were used in direct current, alternating current, pulse and differential pulse polarographic and voltammetric measurements. Potentiostatic electrolysis experiments on mercury electrode were also performed. Precipitates formed on the electrode ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017